Anthocyanins in red grape skin have a positive effect on fruit color and human health. The effect of foliar potassium application on anthocyanin accumulation in grape skin is not well understood. The study aimed to better understand the mechanism of anthocyanin accumulation in grape skin in response to foliar sprays of K2SO4 and KH2PO4. In this study, we investigated the effects of foliar application of KH2PO4 (T2), K2SO4 (T1) and distilled water (CK) on the skin color of ‘Kyoho’ grapes at mid-ripe and mature stages. At 90 and 110 days after full bloom (DAFB), T2 had the greatest total soluble solids (TSS), flavonoid and total anthocyanin contents, followed by T1 and CK. At two stages, the titratable acid content decreased and the juice pH increased under T2 treatment relative to CK. T1 and T2 had lower lightness (L*) than CK, and the color index of red grapes (CIRG) under T1 and T2 increased at two stages compared to CK. KEGG metabolic pathway analysis revealed that flavonoid biosynthesis was the most significantly enriched pathway in CK vs. T2 at 90 and 110 DAFB. At 90 DAFB, T2 had higher expressions of phenylalanine ammonia-lyas (PAL), cytochrome P450 CYP73A100 (CYP73A), 4-coumarate: CoA ligase (4CL), chalcone synthase (CHS), flavanone 3-dioxygenase-like (F3H) and UDP glucose: flavonoid 3-o-glucosyl transferase (UFGT) than CK and T1. Foliar application of potassium fertilizer may accelerate anthocyanin accumulation by altering the transcript levels of PAL, CYP73A, 4CL, CHS, F3H, and UFGT of the flavonoid biosynthesis.