BackgroundMicrobial consortia represent promising candidates for aiding in the development of plant biomass conversion strategies for biofuel production. However, the interaction between different community members and the dynamics of enzyme complements during the lignocellulose deconstruction process remain poorly understood. We present here a comprehensive study on the community structure and enzyme systems of a lignocellulolytic microbial consortium EMSD5 during growth on corn stover, using metagenome sequencing in combination with quantitative metaproteomics.ResultsThe taxonomic affiliation of the metagenomic data showed that EMSD5 was primarily composed of members from the phyla Proteobacteria, Firmicutes and Bacteroidetes. The carbohydrate-active enzyme (CAZyme) annotation revealed that representatives of Firmicutes encoded a broad array of enzymes responsible for hemicellulose and cellulose deconstruction. Extracellular metaproteome analysis further pinpointed the specific role and synergistic interaction of Firmicutes populations in plant polysaccharide breakdown. In particular, a wide range of xylan degradation-related enzymes, including xylanases, β-xylosidases, α-l-arabinofuranosidases, α-glucuronidases and acetyl xylan esterases, were secreted by diverse members from Firmicutes during growth on corn stover. Using label-free quantitative proteomics, we identified the differential secretion pattern of a core subset of enzymes, including xylanases and cellulases with multiple carbohydrate-binding modules (CBMs). In addition, analysis of the coordinate expression patterns indicated that transport proteins and hypothetical proteins may play a role in bacteria processing lignocellulose. Moreover, enzyme preparation from EMSD5 demonstrated synergistic activities in the hydrolysis of pretreated corn stover by commercial cellulases from Trichoderma reesei.ConclusionsThese results demonstrate that the corn stover-adapted microbial consortium EMSD5 harbors a variety of lignocellulolytic anaerobic bacteria and degradative enzymes, especially those implicated in hemicellulose decomposition. The data in this study highlight the pivotal role and cooperative relationship of Firmicutes members in the biodegradation of plant lignocellulose by EMSD5. The differential expression patterns of enzymes reveal the strategy of sequential lignocellulose deconstruction by EMSD5. Our findings provide insights into the mechanism by which consortium members orchestrate their array of enzymes to degrade complex lignocellulosic biomass.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0658-z) contains supplementary material, which is available to authorized users.