Evolution is a powerful tool for the breeding of microorganisms, while the connection between the changes of intracellular metabolism and different evolution directions is still unclear, which once clarified, will greatly expand the application of evolutionary engineering. We aim to clarify the correlation between metabolism changes and evolution directions in two Corynebacterium glutamicum strains for l-valine and l-leucine overproducing originated from the same parental strain by repeated random mutagenesis and selection. GC-MS metabolomics was performed to identify and quantify intracellular metabolites of the evolved and wild-type C. glutamicum strains. Time-series comparison of the fermentation processes was performed. The metabolism differences of three strains mainly exist in central carbon metabolism and the stress-resisting modes. C. glutamicum XV developed an overall "pyruvate-saving" mode for l-valine synthesis, and adopted a trehalose accumulating strategy to resist environmental stresses. C. glutamicum CP depended on an enhanced "pyruvate-producing" mode, together with certain "pyruvate-saving" strategies, for efficient l-leucine synthesis, and accumulated proline, myinositol, and inositol as the stress-resisting measure. These elaborate regulation strategies could be used in future metabolic engineering, making evolution more informative and applicable.
KeywordsBranched-chain amino acid • Corynebacterium glutamcium • Metabolomics • Multivariate statistical analysis * Xixian Xie