Purpose of ReviewAdequate oxygen delivery is essential for life, with hypoxia resulting in dysfunction, and ultimately death, of the cells, organs and organism. Blood flow delivers the oxygen bound in the blood, while haemodynamics is the science of blood flow. Stroke volume (SV) is the fundamental unit of blood flow, and reflects the interdependent performance of the heart, the vessels and the autonomic nervous system. However, haemodynamic management remains generally poor and predominantly guided by simple blood pressure observations alone.Recent FindingsDoppler ultrasound measures SV with unequalled clinical precision when operated by trained personnel. Combining SV with BP measurements allows calculation of flow-pressure based measures which better reflect cardiovascular performance and allows personalised physiologic and pathophysiologic modelling consistent with Frank’s and Starling’s observations.SummaryDoppler SV monitoring and novel flow-pressure parameters may improve our understanding of the cardiovascular system and lead to improved diagnosis and therapy. This review examines the physics and practice of Doppler SV monitoring and its application in advanced haemodynamics.