There is an increasing concern over arsenic (As) contamination in rice. This study was conducted to develope a prediction model for As uptake by rice based on the physico-chemical properties of soil. Soil and brown rice samples were collected from 46 sites in paddy fields near three different areas of closed mines and industrial complexes. Total As concentration, soil pH, Al oxide, available phosphorus (avail-P), organic matter (OM) content, and clay content in the soil samples were determined. Also, 1.0 N HCl, 1.0 M NH 4 NO 3 , 0.01 M Ca(NO 3 ) 2 , and Mehlich 3 extractable-As in the soils were measured as phytoavailable As concentration in soil. Total As concentration in brown rice samples was also determined. Relationships among As concentrations in brown rice, total As concentrations in soils, and selected soil properties were as follows: As concentration in brown rice was negatively correlated with soil pH value, where as it was positively correlated with Al oxide concentration, avail-P concentration, and OM content in soil. In addition, the concentration of As in brown rice was statistically correlated only with 1.0 N HCl-extractable As in soil. Also, using multiple stepwise regression analysis, a modelling equation was created to predict As concentration in brown rice as affected by selected soil properties including soil As concentration. Prediction of As uptake by rice was delineated by the model [As in brown rice = 0.352 + 0.00109 * HCl extractable As in soil + 0.00002 * Al oxide + 0.0097 * OM + 0.00061 * avail-P -0.0332 * soil pH] (R = 0.714 *** ). The concentrations of As in brown rice estimated by the modelling equation were statistically acceptable because normalized mean error (NME) and normalized root mean square error (NRMSE) values were -0.055 and 0.2229, respectively, when compared with measured As concentration in the plant.