The utilization of renewable electricity for power-to-gas (PtG) applications induces fluctuations in the H2 availability from water electrolysis. For subsequent methanation of CO or CO2 the unsteady-state operation of the respective reactor allows to minimize H2 storage capacities. However, the impact of temporal fluctuations in feed gas composition on the methanation reaction and the respective transient kinetics has not yet been fully understood. We investigated the methanation of various CO/CO2 (COx) feed gas mixtures under periodically changing gas compositions with emphasis on the effect of the frequency on the reactor response. We show that the frequency response of CH4 exhibits a characteristic hysteresis, which depends on the switching direction between COx-lean and COx-rich feeds and their composition. From the shape of the hysteresis we are able to conclude on the preferred COx species being hydrogenated to CH4 under respective conditions, which also provides mechanistic insights. By applying high cycling frequencies, the highly reactive species present under CO methanation conditions can even selectively be activated, which explains the higher reactivity compared to steady-state conditions reported, frequently.