In recent years, the problem of Cross-Lingual Text Reuse Detection (CLTRD) has gained the interest of the research community due to the availability of large digital repositories and automatic Machine Translation (MT) systems. These systems are readily available and openly accessible, which makes it easier to reuse text across languages but hard to detect. In previous studies, different corpora and methods have been developed for CLTRD at the sentence/passage level for the English-Urdu language pair. However, there is a lack of large standard corpora and methods for CLTRD for the English-Urdu language pair at the document level. To overcome this limitation, the significant contribution of this study is the development of a large benchmark cross-lingual (English-Urdu) text reuse corpus, called the TREU (Text Reuse for English-Urdu) corpus. It contains English to Urdu real cases of text reuse at the document level. The corpus is manually labelled into three categories (Wholly Derived = 672, Partially Derived = 888, and Non Derived = 697) with the source text in English and the derived text in the Urdu language. Another contribution of this study is the evaluation of the TREU corpus using a diversified range of methods to show its usefulness and how it can be utilized in the development of automatic methods for measuring cross-lingual (English-Urdu) text reuse at the document level. The best evaluation results, for both binary (
F
1
= 0.78) and ternary (
F
1
= 0.66) classification tasks, are obtained using a combination of all Translation plus Mono-lingual Analysis (T+MA) based methods. The TREU corpus is publicly available to promote CLTRD research in an under-resourced language, i.e. Urdu.