Discovering novel concepts from unlabelled data and in a continuous manner is an important desideratum of lifelong learners. In the literature such problems have been partially addressed under very restricted settings, where either access to labelled data is provided for discovering novel concepts (e.g., NCD) or learning occurs for a limited number of incremental steps (e.g., class-iNCD). In this work we challenge the status quo and propose a more challenging and practical learning paradigm called MSc-iNCD, where learning occurs continuously and unsupervisedly, while exploiting the rich priors from large-scale pre-trained models. To this end, we propose simple baselines that are not only resilient under longer learning scenarios, but are surprisingly strong when compared with sophisticated state-of-theart methods. We conduct extensive empirical evaluation on a multitude of benchmarks and show the effectiveness of our proposed baselines, which significantly raise the bar.