An in-depth understanding and characterization of molten salt properties are necessary for the optimized design, efficient operation, and safety assurance of molten salt reactors (MSRs). Investigating molten salt properties in experimental settings can be challenging and time-consuming due to the high temperatures of interest, the salt's corrosiveness, purity and composition control, and health and safety concerns. Therefore, it is beneficial to perform computational screening to assist in the ultimate experimental measurements. Herein, we used firstprinciples molecular dynamics simulations to calculate several thermophysical, structural, and dynamic properties of eutectic LiF−NaF with fuel additives UF 4 and ThF 4 . We found that with the incorporation of uranium or thorium, a prepeak appears in the structure factor, indicative of a medium-range structural ordering. Furthermore, we explore the mechanism through which these structural changes enhance shear stress correlations, thereby increasing the salt's viscosity. This work highlights the importance of studying the atomic-scale structure of molten salts and how the addition of fuel elements can substantially affect it.