This version is available at https://strathprints.strath.ac.uk/59034/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
Predicting Hydrophobic Solvation by Molecular Simulation: 2. New United-atom Model for Alkanes, Alkenes and AlkynesMiguel Jorge*
Department of Chemical and Process Engineering, University of Strathclyde, 75 MontroseStreet, Glasgow G1 1XJ, United Kingdom Email -miguel.jorge@strath.ac.uk Abstract: Existing united-atom models for non-polar hydrocarbons lead to systematic deviations in predicted solvation free energies in hydrophobic solvents. In this paper, an improved set of parameters is proposed for alkane molecules that corrects this systematic deviation and accurately predicts solvation free energies in hydrophobic media, while simultaneously providing a very good description of pure liquid densities. The model is then extended to alkenes and alkynes, again yielding very accurate predictions of solvation free energies and densities for these classes of compounds. For alkynes in particular, this work represents the first attempt at a systematic parameterization using the united-atom approach. Averaging over all 95 solute/solvent pairs tested, the mean signed deviation from experimental data is very close to zero, indicating no systematic error in the predictions. The fact that predictions are robust even for relatively large molecules suggests that the new model may be applicable to solvation of non-polar macromolecules without accumulation of errors. The root mean squared deviation of the simulations is only 0.6 kJ/mol, which is lower than the estimated uncertainty in the experimental measurements. This excellent performance constitutes a solid basis upon which a more general model can be parameterized to describe solvation in both polar and non-polar environments.Keywords: Solubility; Molecular Simulation; hydrocarbons; non-polar; free energy
-IntroductionPredicting solvation in hydrophobic environments is r...