Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Let G be a locally compact abelian group with Haar measure $$m_G$$ m G and let $$\Phi _i$$ Φ i , $$i=1,2,3$$ i = 1 , 2 , 3 , be Young functions. A bounded measurable function m on $$G\times G$$ G × G is a $$(\Phi _1,\Phi _2;\Phi _3)$$ ( Φ 1 , Φ 2 ; Φ 3 ) -bilinear multiplier if there exists $$C>0$$ C > 0 such that the bilinear map $$\begin{aligned} B_m (f,g)(\gamma )= \int _{G}\int _{G} m(x,y) {{\hat{f}}}(x) {{\hat{g}}}(y) \gamma (x+y) dm_G(x)dm_G(y), \end{aligned}$$ B m ( f , g ) ( γ ) = ∫ G ∫ G m ( x , y ) f ^ ( x ) g ^ ( y ) γ ( x + y ) d m G ( x ) d m G ( y ) , satisfies $$N_{\Phi _3}(B_m(f,g))\le CN_{\Phi _1}(f)N_{\Phi _2}(g)$$ N Φ 3 ( B m ( f , g ) ) ≤ C N Φ 1 ( f ) N Φ 2 ( g ) for functions in $$f,g\in L^1({{\hat{G}}})$$ f , g ∈ L 1 ( G ^ ) such that $${{\hat{f}}},{{\hat{g}}}\in L^1(G)$$ f ^ , g ^ ∈ L 1 ( G ) . We denote by $${\mathcal {B}}{\mathcal {M}}_{(\Phi _1,\Phi _2;\Phi _3)}(G)$$ B M ( Φ 1 , Φ 2 ; Φ 3 ) ( G ) the space of all bilinear multipliers on $$G\times G$$ G × G and study some properties of this class. We consider $$(\Phi _1,\Phi _2;\Phi _3)$$ ( Φ 1 , Φ 2 ; Φ 3 ) -bilinear multipliers on various groups such as $${\mathbb {R}}\times {\mathbb {R}},\, \textbf{D}\times \textbf{D},\, {\mathbb {Z}}\times {\mathbb {Z}}$$ R × R , D × D , Z × Z and $${\mathbb {T}}\times {\mathbb {T}}$$ T × T . In particular we prove, under certain assumptions involving the norm of the dilation operator on the Orlicz spaces, that regulated bilinear multipliers in $${\mathcal {B}}{\mathcal {M}}_{(\Phi _1,\Phi _2;\Phi _3)}({\mathbb {R}})$$ B M ( Φ 1 , Φ 2 ; Φ 3 ) ( R ) coincide with $${\mathcal {B}}{\mathcal {M}}_{(\Phi _1,\Phi _2;\Phi _3)}(\textbf{D})$$ B M ( Φ 1 , Φ 2 ; Φ 3 ) ( D ) with where $$\textbf{D}$$ D stands for the real line with the discrete topology. Moreover, we investigate several transference and restriction results on multipliers acting on $${\mathbb {Z}}\times {\mathbb {Z}}$$ Z × Z and $${\mathbb {T}}\times {\mathbb {T}}$$ T × T .
Let G be a locally compact abelian group with Haar measure $$m_G$$ m G and let $$\Phi _i$$ Φ i , $$i=1,2,3$$ i = 1 , 2 , 3 , be Young functions. A bounded measurable function m on $$G\times G$$ G × G is a $$(\Phi _1,\Phi _2;\Phi _3)$$ ( Φ 1 , Φ 2 ; Φ 3 ) -bilinear multiplier if there exists $$C>0$$ C > 0 such that the bilinear map $$\begin{aligned} B_m (f,g)(\gamma )= \int _{G}\int _{G} m(x,y) {{\hat{f}}}(x) {{\hat{g}}}(y) \gamma (x+y) dm_G(x)dm_G(y), \end{aligned}$$ B m ( f , g ) ( γ ) = ∫ G ∫ G m ( x , y ) f ^ ( x ) g ^ ( y ) γ ( x + y ) d m G ( x ) d m G ( y ) , satisfies $$N_{\Phi _3}(B_m(f,g))\le CN_{\Phi _1}(f)N_{\Phi _2}(g)$$ N Φ 3 ( B m ( f , g ) ) ≤ C N Φ 1 ( f ) N Φ 2 ( g ) for functions in $$f,g\in L^1({{\hat{G}}})$$ f , g ∈ L 1 ( G ^ ) such that $${{\hat{f}}},{{\hat{g}}}\in L^1(G)$$ f ^ , g ^ ∈ L 1 ( G ) . We denote by $${\mathcal {B}}{\mathcal {M}}_{(\Phi _1,\Phi _2;\Phi _3)}(G)$$ B M ( Φ 1 , Φ 2 ; Φ 3 ) ( G ) the space of all bilinear multipliers on $$G\times G$$ G × G and study some properties of this class. We consider $$(\Phi _1,\Phi _2;\Phi _3)$$ ( Φ 1 , Φ 2 ; Φ 3 ) -bilinear multipliers on various groups such as $${\mathbb {R}}\times {\mathbb {R}},\, \textbf{D}\times \textbf{D},\, {\mathbb {Z}}\times {\mathbb {Z}}$$ R × R , D × D , Z × Z and $${\mathbb {T}}\times {\mathbb {T}}$$ T × T . In particular we prove, under certain assumptions involving the norm of the dilation operator on the Orlicz spaces, that regulated bilinear multipliers in $${\mathcal {B}}{\mathcal {M}}_{(\Phi _1,\Phi _2;\Phi _3)}({\mathbb {R}})$$ B M ( Φ 1 , Φ 2 ; Φ 3 ) ( R ) coincide with $${\mathcal {B}}{\mathcal {M}}_{(\Phi _1,\Phi _2;\Phi _3)}(\textbf{D})$$ B M ( Φ 1 , Φ 2 ; Φ 3 ) ( D ) with where $$\textbf{D}$$ D stands for the real line with the discrete topology. Moreover, we investigate several transference and restriction results on multipliers acting on $${\mathbb {Z}}\times {\mathbb {Z}}$$ Z × Z and $${\mathbb {T}}\times {\mathbb {T}}$$ T × T .
We deduce continuity and (global) wave-front properties of classes of Fourier multipliers, pseudo-differential, and Fourier integral operators when acting on Orlicz spaces, or more generally, on Orlicz–Sobolev type spaces. In particular, we extend Hörmander’s improvement of Mihlin’s Fourier multiplier theorem to the framework of Orlicz spaces. We also show how Young functions $$\Phi $$ Φ of the Orlicz spaces are linked to properties of certain Lebesgue exponents $$p_\Phi $$ p Φ and $$q_\Phi $$ q Φ emerged from $$\Phi $$ Φ .
Let $$\Phi _i, \Psi _i$$ Φ i , Ψ i be Young functions, $$\omega _i$$ ω i be weights and $$M^{\Phi _i,\Psi _i}_{\omega _i}(\mathbb {R} ^{d})$$ M ω i Φ i , Ψ i ( R d ) be the corresponding Orlicz modulation spaces for $$i=1,2,3$$ i = 1 , 2 , 3 . We consider linear (respect. bilinear) multipliers on $$\mathbb {R} ^{d}$$ R d , that is bounded measurable functions $$m(\xi )$$ m ( ξ ) (respect. $$m(\xi ,\eta )$$ m ( ξ , η ) ) on $$\mathbb {R} ^{d}$$ R d (respect. $$\mathbb {R} ^{2d}$$ R 2 d ) such that $$\begin{aligned} T_m(f)(x)=\int _{\mathbb {R} ^{d}}{\hat{f}}(\xi ) m(\xi )e^{2\pi i \langle \xi , x\rangle }d\xi \end{aligned}$$ T m ( f ) ( x ) = ∫ R d f ^ ( ξ ) m ( ξ ) e 2 π i ⟨ ξ , x ⟩ d ξ (respect. $$\begin{aligned} B_m(f_1,f_2)(x)=\int _{\mathbb {R} ^{d}}\int _{\mathbb {R} ^{d}} \hat{f_1}(\xi ) \hat{f_2}(\eta )m(\xi ,\eta )e^{2\pi i \langle \xi +\eta , x\rangle }d\xi d\eta \end{aligned}$$ B m ( f 1 , f 2 ) ( x ) = ∫ R d ∫ R d f 1 ^ ( ξ ) f 2 ^ ( η ) m ( ξ , η ) e 2 π i ⟨ ξ + η , x ⟩ d ξ d η define a bounded linear (respect. bilinear) operator from $$M^{\Phi _1,\Psi _1}_{\omega _1}(\mathbb {R} ^{d})$$ M ω 1 Φ 1 , Ψ 1 ( R d ) to $$M^{\Phi _2,\Psi _2}_{\omega _2}(\mathbb {R} ^{d})$$ M ω 2 Φ 2 , Ψ 2 ( R d ) (respect. $$M^{\Phi _1,\Psi _1}_{\omega _1}(\mathbb {R} ^{d})\times M^{\Phi _2,\Psi _2}_{\omega _2}(\mathbb {R} ^{d})$$ M ω 1 Φ 1 , Ψ 1 ( R d ) × M ω 2 Φ 2 , Ψ 2 ( R d ) to $$M^{\Phi _3,\Psi _3}_{\omega _3}(\mathbb {R} ^{d})$$ M ω 3 Φ 3 , Ψ 3 ( R d ) ). In this paper we study some properties of these spaces and give methods to generate linear and bilinear multipliers between Orlicz modulation spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.