Transferring spectroscopic stellar labels to 217 million Gaia DR3 XP stars with SHBoost
A. Khalatyan,
F. Anders,
C. Chiappini
et al.
Abstract:With Gaia Data Release 3 (DR3), new and improved astrometric, photometric, and spectroscopic measurements for 1.8 billion stars have become available. Alongside this wealth of new data, however, there are challenges in finding efficient and accurate computational methods for their analysis. In this paper, we explore the feasibility of using machine learning regression as a method of extracting basic stellar parameters and line-of-sight extinctions from spectro-photometric data. To this end, we built a stable… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.