The proposed method connects two unstable periodic orbits by employing trajectories of their associated invariant manifolds that are perturbed in two levels. A first level of velocity perturbations is applied on the trajectories of the discretized manifolds at the points where they approach the nominal unstable periodic orbit in order to accelerate them. A second level of structured velocity perturbations is applied to trajectories that have already been subjected to first level perturbations in order to approximately meet the necessary conditions for a low ΔV transfer. Due to this two-level perturbation approach, the number of the trajectories obtained is significantly larger compared with approaches that employ traditional invariant manifolds. For this reason, the problem of connecting two unstable periodic orbits through perturbed trajectories of their manifolds is transformed into an equivalent discrete optimization problem that is solved with a very low computational complexity algorithm that is proposed in this paper. Finally, the method is applied to a lunar observation mission of practical interest and is found to perform considerably better in terms of ΔV cost and time of flight when compared with previous techniques applied to the same project.