Energy transfer rate constants for Ne(2p(5)3p) and Kr(4p(5)5p) atoms colliding with ground state rare gas atoms (Rg) have been measured. In part, this study is motivated by the possibility of using excited rare gas atoms as the active species in optically pumped laser systems. Rg(np(5)(n + 1)s) metastable states may be produced using low-power electrical discharges. The potential then exits for optical pumping and laser action on the np(5)(n + 1)p ↔ np(5)(n + 1)s transitions. Knowledge of the rate constants for collisional energy transfer and deactivation of the np(5)(n + 1)p states is required to evaluate the laser potential for various Rg + buffer gas combinations. In the present study we have characterized energy transfer processes for Ne (2p(5)3p) + He for the six lowest energy states of the multiplet. Rate constants for state-to-state transfer have been determined. Deactivation of the lowest energy level of Kr (4p(5)5p) by He, Ne, and Kr has also been characterized. Initial results suggest that Kr (4p(5)5p) + Ne mixtures may be the best suited for optically pumped laser applications.