According to the Intergovernmental Panel on Climate Change (IPCC), scenarios that have a good chance of restricting global warming to less than 2°C involve substantial cuts in anthropogenic greenhouse gas (GHG) emissions, implemented through large-scale changes in energy systems. The use of renewable energy sources and fossil fuels, in combination with carbon capture and storage (CCS), could help to reduce GHG emissions in the
AbstractThis paper presents the main experiences gained and conclusions drawn from the demonstration of a first-of-its-kind wood-based biomethane production plant (20-MW capacity, 150 dry tonnes of biomass/day) and 10 years of operation of the 2-4-MW (10-20 dry tonnes of biomass/day) research gasifier at Chalmers University of Technology in Sweden. Based on the experience gained, an elaborated outline for commercialization of the technology for a wide spectrum of applications and end products is defined. The main findings are related to the use of biomass ash constituents as a catalyst for the process and the application of coated heat exchangers, such that regular fluidized bed boilers can be retrofitted to become biomass gasifiers. Among the recirculation of the ash streams within the process, presence of the alkali salt in the system is identified as highly important for control of the tar species. Combined with new insights on fuel feeding and reactor design, these two major findings form the basis for a comprehensive process layout that can support a gradual transformation of existing boilers in district heating networks and in pulp, paper and saw mills, and it facilitates the exploitation of existing oil refineries and petrochemical plants for large-scale production of renewable fuels, chemicals, and materials from biomass and wastes. The potential for electrification of those process layouts are also discussed. The commercialization route represents an example of how biomass conversion develops and integrates with existing industrial and energy infrastructures to form highly effective systems that deliver a wide range of end products. Illustrating the potential, the existing fluidized bed boilers in Sweden alone represent a jet fuel production capacity that corresponds to 10% of current global consumption.
7