In the last decade, the need to arrive at a Grand Unification Theory (GUT) has become more and more pressing, being able to open a new matter and universe knowledge. However, the difficulty arises from the fact that new particle discovery shall not resolve the conflict between the various main forces; that is the gravitation and quantum-relativistic theories. It is evident that new players must enter the scene together with extraordinary innovations from a conceptual point of view as they had already been shown in history when the revolutionary Newton and Einstein theories came into the scene. The study presents an attempt to make a connection between quantum 1 [1] physics and relativistic theories 2 [2] through the introduction of a new item from the peculiar concept of "precursive time". The analysis was carried out starting from the plausible hypothesis that the time component is the subject of "curvature" as a result of the interaction. For the representation of the model, the geometry of the hypersphere has been applied, which resolves correlations between the imaginary temporal level, devoid of vector coordinates, and the four-dimensional M4 plane.
KeywordsTime Curvature, Precursive Time, Hypersphere, Hdtss Theory, Krono Layer, Timespace Quadrant, Discrepancy Time 1 General relativity has only been formulated as a classical theory, that is to say not as a quantum theory. Transforming it into a quantum field theory with the usual techniques of quantization has proved impossible (the theory is not renormalisable). On the other hand, no one has thus far obtained a fully consistent formulation of quantum mechanics, or quantum field theory, on space-time curves. This causes theoretical problems that are not easily solvable whenever one tries to describe the interactions between the gravitational field and subatomic particles. The theory that we expound attempts to marry the two. 2 In general relativity, the limits are essentially due to the treatment of singularities and the states of matter, in which the gravitational and quantum interactions manage to have the same order of magnitude.
R. Burri 433