Abstract:Sparse representations of images in well-designed dictionaries can be used for effective classification. Meanwhile, training data available in most realistic settings are likely to be exposed to geometric transformations, which poses a challenge for the design of good dictionaries. In this work, we study the problem of learning class-representative dictionaries from geometrically transformed image sets. In order to efficiently take account of arbitrary geometric transformations in the learning, we adopt a repr… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.