Abstract--The rate and extent of oxidation of dihydroxybenzenes (DHB) to quinones in acetate-buffered suspensions of synthetic hirnessite were studied using Mn dissolution to monitor reaction progress. Concentration of free in 2+ in the aqueous phase was continuously monitored by electron spin resonance, and ultraviolet-visible (UV-VIS) spectroscopy was utilized to quantify dihydroxybenzene and quinone concentrations. Although dissolution of the oxide and release of Mn 2 + to solution generally accompanied phenol oxidation, a threshold oxidation level had to be exceeded before Mn 2+ appeared in solution. Once this threshold was surpassed, the mole quantity of Mn 2+ dissolved equaled the mole quantity of organic oxidized for 1,4-DHB, but exceeded the quantity of organic oxidized for 1,2-DHB. Thus, the latter phenol was more efficient in dissolving the oxide. Soluble phosphate suppressed Mn 2 § release without influencing the degree of organic oxidation, suggesting that phosphate chemically interacted with reduced Mn to hinder its dissolution. UV spectra provided tentative evidence for the transitory existence of Mn 3 +-1,4-DHB complexes in the solution phase.Infrared spectra of the birnessite after reaction with 1,4-DHB indicated some new features, which may have been a result of the reduction of surface Mn atoms to the 3 + oxidation state. These features were not present after reaction with 1,2-DHB, confirming that the latter phenol efficiently dissolved the oxide to release Mn 2+. Although the initial Mn dissolution was very rapid and was attributed to a surface reaction, further slow Mn release accompanied by more complete oxidation of the phenols suggests a process limited by the rate of dissolution of the solid.