Satellite-derived Digital Elevation Models (DEM) are fast replacing the classical method of elevation data acquisition by ground survey methods. The availability of free and easily accessible DEMs is no doubt of great significance and importance, and a valuable resource in the quest to accurately model the earth's surface topography. However, the suitability of Digital Elevation Models in simulating the topography of the earth at micro, local and regional scales is still an active area of research. The accuracy of Digital Elevation Models vary from one location to another. As such, it is important to conduct local and regional assessments to inform the global user community on the relative performance of these DEMs. This study evaluates the accuracy of the 30-metre Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Models version 2, the 1-kilometre GTOPO30, the 90-metre Shuttle Radar Topography Mission v4 and the 1-kilometre Shuttle Radar Topography Missionv2.1 Digital Elevation Models by validating with highly accurate GPS check-points over Lagos, Nigeria. With a Root Mean Square Error of 3.75m, the results show that Shuttle Radar Topography Mission v4 has the highest vertical accuracy followed by Shuttle Radar Topography Mission v2.1 (Root Mean Square Error: 5.73m), Advanced Spaceborne Thermal Emission and Reflection Radiometer (Root Mean Square Error: 21.70m), and GTOPO30 which shows the lowest vertical accuracy (Root Mean Square Error: 29.41m). By conducting the accuracy assessment of these products in Lagos, this study informs efforts directed at the exploitation of these Digital Elevation Models for topographic mapping and other scientific and environmental application.