Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Studying the structure inside an inhomogeneous stratified snowpack is very important for modelling of the snowpack stability on mountain slopes, and to approximate surfaces of weak zones, and boundaries with different properties These surfaces are often the sliding surfaces of avalanches. Weather conditions" windpumping, snow densification and mechanical and complex heat- and mass-transfer processes define the structural variations of snow and the strength characteristics. The main ventilation components in the snowpack during the snowstorm are the heat and mass exchange between the snow grains and bonds, vapor and heat transfer. The vapor diffusion due to windpumping through snowpack intensifies the metamorphic process We propose the current mathematical model using meteorological data to simulate the snowpack characteristics in order to clarify the changes of the structural and physical-mechanical properties in the stratified snowpack under changing weather conditions. The system of equations allows calculation of the temperature variation in the snowpack, as well as in melted or frozen soil, the snow density, the structural parameters and the snowpack strength on the mountain slope as a function of the heat- and mass-transfer parameters. A numerical finite-difference model for simulations has been used. This allows prediction of the disposition of the depth-hoar layers and the physical-mechanical snow properties. The model has potential to estimate the potential avalanche volume.
Studying the structure inside an inhomogeneous stratified snowpack is very important for modelling of the snowpack stability on mountain slopes, and to approximate surfaces of weak zones, and boundaries with different properties These surfaces are often the sliding surfaces of avalanches. Weather conditions" windpumping, snow densification and mechanical and complex heat- and mass-transfer processes define the structural variations of snow and the strength characteristics. The main ventilation components in the snowpack during the snowstorm are the heat and mass exchange between the snow grains and bonds, vapor and heat transfer. The vapor diffusion due to windpumping through snowpack intensifies the metamorphic process We propose the current mathematical model using meteorological data to simulate the snowpack characteristics in order to clarify the changes of the structural and physical-mechanical properties in the stratified snowpack under changing weather conditions. The system of equations allows calculation of the temperature variation in the snowpack, as well as in melted or frozen soil, the snow density, the structural parameters and the snowpack strength on the mountain slope as a function of the heat- and mass-transfer parameters. A numerical finite-difference model for simulations has been used. This allows prediction of the disposition of the depth-hoar layers and the physical-mechanical snow properties. The model has potential to estimate the potential avalanche volume.
Water vapor in snow is responsible for two main processes connected to almost all studies where snow cover is involved: the snow-density change with time and snow recrystallization. Both processes are the result of a balance between evaporation and condensation on individual snow-crystal surfaces. However, such micro-scale mass balance has rarely been considered as a component of “macro-” heat and mass transfer in snow cover. The present work is an attempt to find a way of combining these two mass-exchange processes, as occurs in Nature. Density change and snow recrystallization rates are analyzed based on recently published temperature field observations around individual snow crystals, combined with experimental data on temperature distributions and recrystallization rates in snow under applied temperature gradients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.