Transformations, symmetries and Noether theorems for differential-difference equations
Linyu Peng,
Peter E Hydon
Abstract:The first part of this paper develops a geometric setting for differential-difference equations that resolves an open question about the extent to which continuous symmetries can depend on discrete independent variables. For general mappings, differentiation and differencing fail to commute. We prove that there is no such failure for structure-preserving mappings, and identify a class of equations that allow greater freedom than is typical.For variational symmetries, the above results lead to a simple proof of… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.