Fast detection of the trajectory is the key point to improve the further emergency proposal. Especially for ultra-long highway, prompt detection is labor-intensive. However, automatic detection relies on the accuracy and speed of vehicle detection, and tracking. In multi-camera surveillance system for ultra-long highways, it is often difficult to capture the same vehicle without intervals, which makes vehicle re-recognition crucial as well. In this paper, we present a framework that includes vehicle detection and tracking using improved DeepSORT, vehicle re-identification, feature extraction based on trajectory rules, and behavior recognition based on trajectory analysis. In particular, we design a network architecture based on DeepSORT with YOLOv5s to address the need for real-time vehicle detection and tracking in real-world traffic management. We further design an attribute recognition module to generate matching individuality attributes for vehicles to improve vehicle re-identification performance under multiple neighboring cameras. Besides, the use of bidirectional LSTM improves the accuracy of trajectory prediction, demonstrating its robustness to noise and fluctuations. The proposed model has a high advantage from the cumulative matching characteristic (CMC) curve shown and even improves above 15.38% compared to other state-of-the-art methods. The model developed on the local highway vehicle dataset is comprehensively evaluated, including abnormal trajectory recognition, lane change detection, and speed anomaly recognition. Experimental results demonstrate the effectiveness of the proposed method in accurately identifying various vehicle behaviors, including lane changes, stops, and even other dangerous driving behavior.