Fructosyltransferases catalyze the transfer of a fructose unit from one sucrose/fructan to another and are engaged in the production of fructooligosaccharide/fructan. The enzymes belong to the glycoside hydrolase family 32 (GH32) with a retaining catalytic mechanism. Here we describe the crystal structures of recombinant fructosyltransferase (AjFT) from Aspergillus japonicus CB05 and its mutant D191A complexes with various donor/acceptor substrates, including sucrose, 1-kestose, nystose, and raffinose. This is the first structure of fructosyltransferase of the GH32 with a high transfructosylation activity. The structure of AjFT comprises two domains with an N-terminal catalytic domain containing a five-blade -propeller fold linked to a C-terminal -sandwich domain. Structures of various mutant AjFT-substrate complexes reveal complete four substrate-binding subsites (؊1 to ؉3) in the catalytic pocket with shapes and characters distinct from those of clan GH-J enzymes. Residues Asp-60, Asp-191, and Glu-292 that are proposed for nucleophile, transition-state stabilizer, and general acid/base catalyst, respectively, govern the binding of the terminal fructose at the ؊1 subsite and the catalytic reaction. Mutants D60A, D191A, and E292A completely lost their activities. Residues Ile-143, Arg-190, Glu-292, Glu-318, and His-332 combine the hydrophobic Phe-118 and Tyr-369 to define the ؉1 subsite for its preference of fructosyl and glucosyl moieties. Ile-143 and Gln-327 define the ؉2 subsite for raffinose, whereas Tyr-404 and Glu-405 define the ؉2 and ؉3 subsites for inulin-type substrates with higher structural flexibilities. Structural geometries of 1-kestose, nystose and raffinose are different from previous data. All results shed light on the catalytic mechanism and substrate recognition of AjFT and other clan GH-J fructosyltransferases.