We have generated a transgenic mouse model for astrocytoma by expressing the v-src kinase under control of the glial ®brillary acidic protein (GFAP) gene regulatory elements in astrocytes. Abnormal astrogliosis was observed in all transgenic animals already at 2 weeks postnatally, frequently followed by the development of dysplastic changes. Later, small proliferative foci arose, and overt astrocytoma developed in the brain and spinal cord in 14.4% of mice after a follow up time of 65 weeks. While early lesions were histologically consistent with low-grade astrocytoma, at later stages most tumors were highly mitotic and frankly malignant. Vascular endothelial growth factor (VEGF) was expressed by tumor cells already at early stages, suggesting induction by v-src, and it was most pronounced in pseudopalisading cells surrounding necrotic areas, implying additional upregulation by hypoxia. In larger lesions, mitotic activity and expression of¯k-1, the cognate receptor of VEGF were induced in endothelial cells. Therefore, end-stage tumors mimicked the morphological and molecular characteristics of human glioblastoma multiforme. Time course and stochastic nature of the process indicate that v-src did not su ce for malignant transformation, and that astrocytomas were the result of a multistep process necessitating co-operation of additional genetic events.