Skeletal growth by endochondral ossification involves tightly coordinated chondrocyte differentiation that creates reserve, proliferating, prehypertrophic, and hypertrophic cartilage zones in the growth plate. Many human skeletal disorders result from mutations in cartilage extracellular matrix (ECM) components that compromise both ECM architecture and chondrocyte function. Understanding normal cartilage development, composition, and structure is therefore vital to unravel these disease mechanisms. To study this intricate process in vivo by proteomics, we analyzed mouse femoral head cartilage at developmental stages enriched in either immature chondrocytes or maturing/hypertrophic chondrocytes (postnatal days 3 and 21, respectively). Using LTQ-Orbitrap tandem mass spectrometry, we identified 703 cartilage proteins. Differentially abundant proteins (q < 0.01) included prototypic markers for both early and late chondrocyte differentiation (epiphycan and collagen X, respectively) and novel ECM and cell adhesion proteins with no previously described roles in cartilage development (tenascin X, vitrin, Urb, emilin-1, and the sushi repeat-containing proteins SRPX and SRPX2). Meta-analysis of cartilage development in vivo and an in vitro chondrocyte culture model (Wilson, R., Diseberg, A. F., Gordon, L., Zivkovic, S., Tatarczuch, L., Mackie, E. J., Gorman, J. J., and Bateman, J. Cartilage is a unique tissue characterized by an abundant extracellular matrix (ECM) 1 and a single cell type, the chondrocyte. However, the permanent hyaline cartilage, which provides the articulating surfaces of long bones and vertebrae, and the transient growth plate cartilage responsible for endochondral bone growth are uniform in neither cellular phenotype nor protein composition. In articular cartilage, the chondrocytes form morphologically distinct regions comprising a superficial region of flattened cells, a sparsely populated middle layer, and a deep zone of hypertrophic chondrocytes embedded in calcified cartilage at the chondro-osseous junc-