Connective tissue growth factor (CTGF) is a secreted protein that belongs to CCN family. The proteins in this family are implicated in various biological processes, such as angiogenesis, adhesion, migration, and apoptosis. In this study, we explored the roles of CTGF in lung tumorigenesis. The expression levels of CTGF in 58 lung cancer samples were reduced by >2 fold in 57% of the samples compared with matched normal samples using real-time reverse transcription-PCR. These results were confirmed by immunohistochemical staining for CTGF in normal lung epithelia and lung cancer. Cellular proliferation was inhibited in non -small cell lung cancer (NSCLC) cell lines NCI-H460, NCI-H520, NCI-H1299, and SK-MES-1 by CTGF overexpression. Partially purified CTGF suppressed lung cancer cell growth. The growth inhibition caused by CTGF overexpression was associated with growth arrest at G 0 -G 1 and prominent induction of p53 and ADP ribosylation factor. Most interestingly, overexpression of CTGF suppressed insulin-like growth factor-I -dependent Akt phosphorylation and epidermal growth factordependent extracellular signal-regulated kinase 1/2 phosphorylation. In summary, NSCLC cells expressed decreased levels of CTGF compared with normal lung cells; this lower expression has an effect on lung cancer cell proliferation and its cellular response to growth factors. Our data suggest that CTGF may behave as a secreted tumor suppressor protein in the normal lung, and its expression is suppressed in many NSCLCs.