(M.P.P.) As a step in developing an understanding of plant adaptation to low atmospheric pressures, we have identified genes central to the initial response of Arabidopsis to hypobaria. Exposure of plants to an atmosphere of 10 kPa compared with the sea-level pressure of 101 kPa resulted in the significant differential expression of more than 200 genes between the two treatments. Less than one-half of the genes induced by hypobaria are similarly affected by hypoxia, suggesting that response to hypobaria is unique and is more complex than an adaptation to the reduced partial pressure of oxygen inherent to hypobaric environments. In addition, the suites of genes induced by hypobaria confirm that water movement is a paramount issue at low atmospheric pressures, because many of gene products intersect abscisic acid-related, drought-induced pathways. A motivational constituent of these experiments is the need to address the National Aeronautics and Space Administration's plans to include plants as integral components of advanced life support systems. The design of bioregenerative life support systems seeks to maximize productivity within structures engineered to minimize mass and resource consumption. Currently, there are severe limitations to producing Earth-orbital, lunar, or Martian plant growth facilities that contain Earth-normal atmospheric pressures within light, transparent structures. However, some engineering limitations can be offset by growing plants in reduced atmospheric pressures. Characterization of the hypobaric response can therefore provide data to guide systems engineering development for bioregenerative life support, as well as lead to fundamental insights into aspects of desiccation metabolism and the means by which plants monitor water relations.Interest in the exploration of environments beyond Earth's atmosphere has brought unique challenges to bear on the understanding of the biological systems that will inhabit those environments. Among these challenges are alterations in atmospheric pressure, which are known to have effects on plant physiology and development (Mansell et al., 1968; Gale, 1973; Andre and Richaux, 1986;McKay and Toon, 1991; Andre and Massimino, 1992;Wheeler, 2000; He et al., 2003). Concepts for greenhouses on Mars, on the moon, and in Earth orbit incorporate low atmospheric pressures to address engineering and systems limitations (Boston, 1981; Drysdale, 2001).Historically, low-pressure environments have been used throughout the U.S. human space exploration programs to reduce the masses of structural and consumable components of space vehicles. Such reductions have resulted in increased mission lengths and/or increased masses of launched payloads. For example, the Mercury, Gemini, and Apollo environments were designed to operate at 34 kPa with a pure oxygen environment to simplify support of humans in space (Baker, 1981;Martin and McCormick, 1992). Skylab was also operated at 34 kPa (with a 70% O 2 /30% N 2 gas mixture), and that pressure was further reduced during period...