Summary
Allopolyploidization, which entails interspecific hybridization and whole genome duplication (WGD), is associated with emergent genetic and epigenetic instabilities that are thought to contribute to adaptation and evolution. One frequent genomic consequence of nascent allopolyploidization is homoeologous exchange (HE), which arises from compromised meiotic fidelity and generates genetically and phenotypically variable progenies.
Here, we used a genetically tractable synthetic rice segmental allotetraploid system to interrogate genome‐wide DNA methylation and gene expression responses and outcomes to the separate and combined effects of hybridization, WGD and HEs.
Progenies of the tetraploid rice were genomically diverse due to genome‐wide HEs that affected all chromosomes, yet they exhibited overall methylome stability. Nonetheless, regional variation of cytosine methylation states was widespread in the tetraploids. Transcriptome profiling revealed genome‐wide alteration of gene expression, which at least in part associates with changes in DNA methylation. Intriguingly, changes of DNA methylation and gene expression could be decoupled from hybridity and sustained and amplified by HEs.
Our results suggest that HEs, a prominent genetic consequence of nascent allopolyploidy, can exacerbate, diversify and perpetuate the effects of allopolyploidization on epigenetic and gene expression variation, and hence may contribute to allopolyploid evolution.