Despite tremendous technical improvements in neuroimaging and neurosurgery, the prognosis for patients with malignant astrocytoma remains devastating because of the underlying biology and growth characteristics of the tumor. However, our understanding of the molecular bases of these tumors has greatly increased due to study findings involving operative specimens, astrocytoma predisposing human syndromes, teratogen-induced animal and established human astrocytoma cell lines, and more recently transgenic mouse models. Appropriate small-animal models of spontaneously occurring astrocytomas, which replicate the growth and molecular characteristics found in human tumors, are essential to test the relevance and interactions of these molecular aberrations. In addition, it is hoped that relevant molecular targets will eventually be therapeutically exploited to improve patient outcomes. Appropriate animal models are also essential for testing these novel biological therapies, before they are brought to the clinic, requiring a large investment of time and money. In this paper, various astrocytoma models are discussed, with emphasis on transgenic mouse models that are of great interest to laboratory investigators.