In clinical therapy, the amount of antigen administered to achieve oral tolerance for allergic diseases is large, and the cost is a major consideration. In this study, we used tobacco plants to develop a large-scale protein production system for allergen-specific immunotherapy, and we investigated the mechanisms of oral tolerance induced by a transgenic plant-derived antigen. We used plants (tobacco leaves) transgenic for the Dermatophagoides pteronyssinus 2 (Der p2) antigen to produce Der p2. Mice received total protein extract from Der p2 orally once per day over 6 days (days 0-2 and days 6-8). Mice were also sensitized and challenged with yeast-derived recombinant Der p2 (rDer p2), after which the mice were examined for airway hyper-responsiveness and airway inflammation. After sensitization and challenge with rDer p2, mice that were fed with total protein extracted from transgenic plants showed decreases in serum Der p2-specific IgE and IgG1 titers, decreased IL-5 and eotaxin levels in bronchial alveolar lavage fluid, and eosinophil infiltration in the airway. In addition, hyper-responsiveness was also decreased in mice that were fed with total protein extracted from transgenic plants, and CD4 1 CD25 1 Foxp3 1 regulatory T cells were significantly increased in mediastinal and mesenteric lymph nodes. Furthermore, splenocytes isolated from transgenic plant protein-fed mice exhibited decreased proliferation and increased IL-10 secretion after stimulation with rDer p2. The data here suggest that allergen-expressing transgenic plants could be used for therapeutic purposes for allergic diseases.