The relative inflammatory roles of neutrophils, selectins, and terminal complement components are investigated in this study of skeletal muscle reperfusion injury. Mice underwent 2 h of hindlimb ischemia followed by 3 h of reperfusion. The role of neutrophils was defined by immunodepletion, which reduced injury by 38%, as did anti-selectin therapy with recombinant soluble P-selectin glycoprotein ligand-immunoglobulin (Ig) fusion protein. Injury in C5-deficient and soluble complement receptor type 1-treated wild-type mice was 48% less than that of untreated wild-type animals. Injury was restored in C5-deficient mice reconstituted with wild-type serum, indicating the effector role of C5-9. Neutropenic C5-deficient animals showed additive reduction in injuries (71%), which was lower than C5-deficient neutrophil-replete mice, indicating neutrophil activity without C5a. Hindlimb histological injury was worse in ischemic wild-type and C5-deficient animals reconstituted with wild-type serum. In conclusion, the membrane attack complex and neutrophils act additively to mediate skeletal muscle reperfusion injury. Neutrophil activity is independent of C5a but is dependent on selectin-mediated adhesion.