Venkattraman, A; Alexeenko, Alina A.; Gallis, M A.; and Ivanov, M S., "A comparative study of no-time-counter and majorant collision frequency numerical schemes in DSMC" (2012) Abstract. The direct simulation Monte Carlo (DSMC) method is a stochastic approach to solve the Boltzmann equation and is built on various numerical schemes for transport, collision and sampling. This work aims to compare and contrast two popular O(N) DSMC collision schemes -no-time-counter (NTC) and majorant collision frequency (MCF) -with the goal of identifying the fundamental differences. MCF and NTC schemes are used in DSMC simulations of a spatially homogeneous equilibrium gas to study convergence with respect to various collision parameters. While the MCF scheme forces the reproduction of the exponential distribution of time between collisions, the NTC scheme requires larger number of simulators per cell to reproduce this Poisson process. The two collision schemes are also applied to the spatially homogeneous relaxation from an isotropic non-Maxwellian given by the Bobylev exact solution to the Boltzmann equation. While the two schemes produce identical results at large times, the initial relaxation shows some differences during the first few timesteps.