Different Zinc Oxide (ZnO) morphologies have been used to improve photodetector efficiencies for optoelectronic applications. Herein, we present the very novel hybrid ZnO flower-rod (HZFR) morphology, to improve photodetector response and efficiency when compared to the prevalently used ZnO nanorods (NRs) and ZnO nanoflowers (NFs). The HZFR was fabricated via sol-gel microwave-assisted hydrothermal methods. HZFR achieves the benefits of both NFs, by trapping a greater amount of UV light for the generation of e-h pairs, and NRs, by effectively transporting the generated e-h pairs to the channel. The fabricated photosensors were characterized with scanning electron microscopy, X-ray diffraction, photoluminescence, and a Keithley 4200A-SCS parameter analyzer for their morphology, structural characteristics, optical performance, and electrical characteristics, respectively. The transient current response, current-voltage characteristics, and responsivity measurements were set as a benchmark of success to compare the sensor response of the three different morphologies. It was found that the novel HZFR showed the best UV sensor performance with the fastest response time (~7 s), the highest on-off ratio (52), and the best responsivity (126 A/W) when compared to the NRs and NFs. Hence, it was inferred that the HZFR morphology would be a great addition to the ZnO family for photodetector applications.