The understanding of factors that affect the dissemination of a viral infection is fundamental to help combat it. For instance, during the COVID-19 pandemic that changed the lives of people all over the world, one observes regions with different incidences of cases. One can speculate that population density might be one of the variables that affect the incidence of cases. In populous areas, such as big cities or congested urban areas, higher COVID-19 incidences could be observed than in rural regions. It is natural to think that if population density is such an important factor, then a gradient or difference in population density might lead to a diffusion process that will proceed until equilibrium is reached. The aim of this paper consists of the inclusion of a diffusion concept into the COVID-19 modeling. With this concept, one covers a gradient-driven transfer of the infection next to epidemic growth models (SIR-type models). This is discussed for a certain period of the German situation based on the quite different incidence data for the different federal states of Germany. With this ansatz, some phenomena of the actual development of the pandemic are found to be confirmed. The model provides a possibility to investigate certain scenarios, such as border-crossings or local spreading events, and their influence on the COVID-19 propagation. The resulting information can be a basis for the decisions of politicians and medical persons in charge of managing a pandemic.