IntroductionZygomatic fractures form a major entity in craniomaxillofacial traumatology. Few studies have dealt with biomechanical basics and none with the role of the facial soft tissues. Therefore this study should investigate, whether facial soft tissue plays a protecting role in lateral midfacial trauma.MethodsA head-to-head encounter was simulated by way of finite element analysis. In two scenarios this impact - with and without soft tissues - was investigated to demonstrate the potential protective effects. To achieve realism, a transient simulation was chosen, which considers temporal dynamics and realistic material parameters derived from CT grey values.ResultsThe simulation results presented a typical zygomatic fracture with all relevant fracture lines. Including soft tissues did not change the maximum bony stress pattern, but increased the time period from impact to maximal stresses by 1.3 msec.ConclusionsAlthough this could have clinical implications, facial soft tissues may be disregarded in biomechanical simulations of the lateral midface, if only the bony structures are to be investigated. Soft tissue seems to act as a temporal buffer only.