A comparison of poly(trimethylene terephthalate)(PTT) and poly(ethlene terephthalate)(PET) fibers spun at various take-up speeds was presented. Fiber characterization included tensile and thermal properties, optical birefringence, density, sonic modulus, boil-off shrinkage, and wide-angle X-ray diffraction. The phenomenon of stress-induced crystallization was inferred from the X-ray diffraction diagrams for fibers spun with take-up speeds over 4000 m/min. The tenacity and elongation of PTT and PET fiber showed typical results, but the initial modulus of PTT fiber was nearly unchanged over the entire take-up speed range (2000-7000 m/min), whereas that of PET, as expected, increased monotonically with increasing take-up speed. This divergent behavior could be explained by the different molecular deformations in the c-axis as determined from X-ray diffraction patterns. The fiber crystallinity, density, and heat of fusion of both polymers increased with take-up speed. The boil-off shrinkage decreased with increasing take-up speed. The optical birefringence of the two fiber types showed a maximum level at a take-up speed of ca. 5000 m/min. The melting temperature behavior of PTT fiber was different from that of PET fibers. It was found that PTT is less sensitive to stress induced changes at high spinning speeds than is PET.