2022
DOI: 10.1017/jfm.2022.741
|View full text |Cite
|
Sign up to set email alerts
|

Transient flows and migration in granular suspensions: key role of Reynolds-like dilatancy

Abstract: We investigate the transient dynamics of a sheared suspension of neutrally buoyant particles in pressure-imposed rheology configuration, subject to a sudden change in shear rate or external pressure. Discrete element method simulations show that, depending on the flow parameters (particle and system size, initial volume fraction), the early stress response of the suspension may differ strongly from the prediction of the suspension balance model based on the steady-state rheology. We show that a two-phase model… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
(1 citation statement)
references
References 67 publications
0
1
0
Order By: Relevance
“…On the one hand, other dilatancy laws beyond the linear expression given by (2.15) should be explored. On the other hand, non-local dynamics should be introduced in the model to take into account the system size, which, in turn, has an important effect on the level of stresses as reported by Athani, Metzger, Forterre, and Mari (2022).…”
Section: Discussionmentioning
confidence: 99%
“…On the one hand, other dilatancy laws beyond the linear expression given by (2.15) should be explored. On the other hand, non-local dynamics should be introduced in the model to take into account the system size, which, in turn, has an important effect on the level of stresses as reported by Athani, Metzger, Forterre, and Mari (2022).…”
Section: Discussionmentioning
confidence: 99%