SUMMARYThe coupling between the boundary element method (BEM)/the traction boundary element method (TBEM) and the method of fundamental solutions (MFS) is proposed for the transient analysis of conduction heat transfer in the presence of inclusions, thereby overcoming the limitations posed by each method. The full domain is divided into sub-domains, which are modeled using the BEM/TBEM and the MFS, and the coupling of the sub-domains is achieved by imposing the required boundary conditions.The accuracy of the proposed algorithms, using different combinations of BEM/TBEM and MFS formulations, is checked by comparing the resulting solutions against referenced solutions.The applicability of the proposed methodology is shown by simulating the thermal behavior of a solid ring incorporating a crack or a thin inclusion in its wall. The crack is assumed to have null thickness and does not allow diffusion of energy; hence, the heat fluxes are null along its boundary. The thin inclusion is modeled as filled with thermal insulating material.