Osteoarthritis is a joint disease that causes pain, stiffness, and reduced joint function because the protective cushioning inside the joints, called cartilage, gradually wears away. This condition is caused by various factors and complex processes in the joint’s environment, involving different types of cells producing factors that can either maintain the joint health or contribute to osteoarthritis. This study aimed to understand the factors influencing both healthy and diseased joints in DDD strategies for the in vitro preconditioning of MSCs. An electronic search in the PubMed, Scopus, and Web of Science databases was carried out using the terms (cartilage OR chondr*) AND (repair OR regeneration OR healing) AND (niche OR microenvironment)) AND (“growth factor” OR GF OR cytokine). Researchers used various methods, including macroscopic examinations, histology, immunohistochemistry, and microCT. Molecules associated with joint inflammation were identified, like macrophage markers, MMP-13, TNF, apoptotic markers, and interleukins. Chondrogenesis-related factors such as aggrecan GAG, collagen type II, and TGF beta family were also identified. This study suggests that balancing certain molecules and ensuring the survival of joint chondrocytes could be crucial in improving the condition of osteoarthritic joints, emphasizing the importance of chondrocyte survival and activity. Future preconditioning methods for MSC- and EV-based therapies can find suitable strategies in the described microenvironments to explore co-culture systems and soluble or extracellular matrix factors.