In this work, we
studied the intestinal absorption of a peptide
with a molecular weight of 4353 Da (MEDI7219) and a protein having
a molecular weight of 11 740 Da (PEP12210) in the rat intestinal
instillation model and compared their absorption to fluorescein isothiocyanate
(FITC)-labeled dextrans of similar molecular weights (4 and 10 kDa).
To increase the absorption of the compounds, the permeation enhancer
sodium caprate (C10) was included in the liquid formulations at concentrations
of 50 and 300 mM. All studied compounds displayed an increased absorption
rate and extent when delivered together with 50 mM C10 as compared
to control formulations not containing C10. The time period during
which the macromolecules maintained an increased permeability through
the intestinal epithelium was approximately 20 min for all studied
compounds at 50 mM C10. For the formulations containing 300 mM C10,
it was noted that the dextrans displayed an increased absorption rate
(compared to 50 mM C10), and their absorption continued for at least
60 min. The absorption rate of MEDI7219, on the other hand, was similar
at both studied C10 concentrations, but the duration of absorption
was extended at the higher enhancer concentration, leading to an increase
in the overall extent of absorption. The absorption of PEP12210 was
similar in terms of the rate and duration at both studied C10 concentrations.
This is likely caused by the instability of this molecule in the intestinal
lumen. The degradation decreases the luminal concentrations over time,
which in turn limits absorption at time points beyond 20 min. The
results from this study show that permeation enhancement effects cannot
be extrapolated between different types of macromolecules. Furthermore,
to maximize the absorption of a macromolecule delivered together with
C10, prolonging the duration of absorption appears to be important.
In addition, the macromolecule needs to be stable enough in the intestinal
lumen to take advantage of the prolonged absorption time window enabled
by the permeation enhancer.