Based on the non-linear seepage characteristics of tight reservoirs and the reconstruction mode of vertical wells with actual volume fracturing, a seven-area percolation model for volume fracturing vertical wells in tight reservoirs is established. Laplace transform and Pedrosa transform are applied to obtain analytical solutions of bottom hole pressure and vertical well production under a constant production regime. After verifying the correctness of the model, the influence of the fracture network parameters on the pressure and production is studied. The research results indicate that as the permeability modulus increases, the production of volume fracturing vertical wells decreases. The penetration ratio of the main crack and the half-length of the main crack have a small impact on production, while the diversion capacity of the main crack has a significant impact on the initial production, but it is ultimately limited by the effective volume of the transformation. Under constant pressure conditions, the greater the width and permeability of the ESRV region, the higher the vertical well production rate is. The smaller the aspect ratio of the ESRV region, the higher the mid-term yield and the faster the yield decrease. The research results show guiding significance for the design of vertical well volume fracturing in tight reservoirs.