Previous studies have revealed that eye contact with either air pollutants or adverse indoor and/or outdoor environmental conditions can affect tear film composition and ocular surface components. These effects are mediated by selective binding of the environmental agents to ocular surface membrane receptors, leading to activation of pro inflammatory signaling pathways. The aim of the current review was to examine the published evidence associated with environmental factors and ocular surface disease and dry eye. Specifically, the reader will appreciate why it is possible to refer to them as mediators of Environmental Dry Eye Disease (EDED), a singular clinical entity inside DED context, directly caused by pollutants and/ or adverse climatic conditions. The indicators and clinical findings are described along with EDE differential diagnosis in its acute and the chronic phases. Based on strong existing evidence of clinical reports and epidemiological observations regarding DED and environmental factors we conclude that there is a straight cause-and-effect relationship between ambient stresses and DED. International standards and web-based tools are described for monitoring worldwide environmental conditions referring localities and populations susceptible to EDED. This information is beneficial to health providers to pinpoint the individuals and predisposed groups afflicted with DED. Such insights may not only improve the understanding and treatment of DED but also help to identify the contributing factors and lower the frequency and progression of EDED. of DED has been studied and confirmed in animal models of human DED (13)(14)(15) .
KeywordsAs indicated, a healthy and pain-free ocular surface depends on identifying and eliminating factors that cause ambient humidity, airflow and purity, and temperature to intolerable levels. Such an undertaking is needed to preserve tear film qualities commensurate with ocular surface health. This is essential to sustain sufficient corneal refractive power, visual acuity, and ocular comfort (5,16,17) . A desiccating environment can lead to increase in tear film evaporation and/or decline in its turn over and clearance. These initial events lead to exposure of the ocular surface to hazardous environmental elements that trigger or exacerbate EDED symptoms. Clinical findings have shown that increased numbers of people are affected by EDED because of exposure to environmental factors ( Figure 2).Our purpose herein is to provide a critical appraisal of the clinical and epidemiological evidence indicating that DED is influenced by environmental factors. Secondly, we delineate EDED as a single clinical entity with a unique set of symptoms and clinical findings different from that of either DED or other diseases, such as Sjögren's syndrome, diabetes mellitus or drug induced, allergic conjunctivitis, toxic or irritative conjunctivitis, and actinic keratitis. Moreover, we will describe standard tools used to monitor environmental conditions and discuss their relevance in EDED ep...