We study the unexpected disappearance of stable homoclinic orbits in regions of parameter space in a neural field model with one spatial dimension. The usual approach of using numerical continuation techniques and local bifurcation theory is insufficient to explain the qualitative change in the model's behaviour. The lack of robustness of the model to small perturbations in parameters is surprising and the phenomenon may be of broader significance than just our model. By exploiting the Hamiltonian structure of the timeindependent system, we develop a numerical technique with which we discover that a small, separate solution curve exists for a range of parameter values. As the firing rate function steepens, the small curve causes the main curve to break and stable homoclinic orbits are destroyed in a region of parameter space. Numerically, we use level set analysis to find that a codimension-one heteroclinic bifurcation occurs at the terminating ends of the solution curves.By replacing the firing rate function with a step function, we show analytically that the bifurcation is related to the value of the firing threshold. We also show the existence of heteroclinic orbits at the breakpoints using a travelling front analysis in the time-dependent system.