Electrical properties of thin high-k dielectric films are influenced (or even governed) by the presence of macroscopic, microscopic and atomic-size defects. For most applications, a structurally perfect dielectric material with moderate parameters would have sufficiently low leakage and sufficiently long lifetime. But defects open new paths for carrier transport, increasing the currents by orders of magnitude, causing instabilities due to charge trapping, and promoting the formation of defects responsible for electrical breakdown events and for the failure of the film. We discuss how currents flow across the gate stack and how damage is created in the material. We also illustrate the contemporary basic knowledge on hazardous defects (including certain impurities) in high-k dielectrics using the example of a family of materials based on Pr oxides. As an example of the influence of stoichiometry on the electrical pa-rameters of the dielectric, we analyze the effect of nitrogen incorporation into ultrathin Hf silicate films.