We present the first multi-wavelength simultaneous detection of QPP in a superflare (more than a thousand times stronger than known solar flares) on a cool star, in soft X-rays (SXR, with XMM-Newton) and white light (WL, with Kepler). It allowed for the first-ever analysis of oscillatory processes in a stellar flare simultaneously in thermal and non-thermal emissions, conventionally considered to come from the corona and chromosphere of the star, respectively. The observed QPP have periods 1.5 ± 0.15 hours (SXR) and 3 ± 0.6 hours (WL), and correlate well with each other. The unique relationship between the observed parameters of QPP in SXR and WL allowed us to link them with oscillations of the electric current in the flare loop, which directly affect the dynamics of non-thermal electrons and indirectly (via Ohmic heating) the thermal plasma. These findings could be considered in favour of the equivalent LCR-contour model of a flare loop, at least in the extreme conditions of a stellar superflare.