Gamma-ray bursts (GRBs) are the most energetic and mysterious events in the Universe, which are observed in all ranges of electromagnetic spectrum. Most valuable results about physics of GRB are obtained by optical observations. GRBs are initially detected in gamma-rays with poor localization accuracy, and an optical counterpart should be found. The faster the counterpart is found, the more it can give to physics. This first phase, as a rule, corresponds to an early afterglow. The next phases of the observations are multicolor photometry, polarimetry, spectroscopy, and few days later the search for a supernova or kilonova associated with the GRB, and finally, observations of the host galaxy. To manage the problem of fast optical observations, telescopes with a small aperture are suitable. They can have a large field of view, which is necessary to cover initial localizations of GRBs. The sensitivity of the telescope+detector may be sufficient to record statistically significant light curve with fine time resolution. We describe one of the networks of telescopes with a small aperture IKI-GRB FuN, and present the results of early optical observation of GRB sources, and discuss the design requirements of the optical observations for effective GRB research in the next decade.