Spiral wave chimeras (SWCs), which combine the features of spiral waves and chimera states, are a new type of dynamical patterns emerged in spatiotemporal systems due to the spontaneous symmetry breaking of the system dynamics. In generating SWC, the conventional wisdom is that the dynamical elements should be coupled in a nonlocal fashion. For this reason, it is commonly believed that SWC is excluded from the general reaction-diffusion (RD) systems possessing only local couplings. Here, by an experimentally feasible model of three-component FitzHugh-Nagumo-type RD system, we demonstrate that, even though the system elements are locally coupled, stable SWCs can still be observed in a wide region in the parameter space. The properties of SWCs are explored, and the underlying mechanisms are analyzed from the point view of coupled oscillators. Transitions from SWC to incoherent states are also investigated, and it is found that SWCs are typically destabilized in two scenarios, namely core breakup and core expansion. The former is characterized by a continuous breakup of the single asynchronous core into a number of small asynchronous cores, whereas the latter is featured by the continuous expansion of the single asynchronous core to the whole space. Remarkably, in the scenario of core expansion, the system may develop into an intriguing state in which regular spiral waves are embedded in a completely disordered background. This state, which is named shadowed spirals, manifests from a new perspective the coexistence of incoherent and coherent states in spatiotemporal systems, generalizing therefore the traditional concept of chimera states. Our studies provide an affirmative answer to the observation of SWCs in RD systems, and pave a way to the realization of SWCs in experiments.