Emergence of the giant weak component in directed random graphs with arbitrary degree distributions Kryven, I.
General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. The weak component generalizes the idea of connected components to directed graphs. In this paper, an exact criterion for the existence of the giant weak component is derived for directed graphs with arbitrary bivariate degree distributions. In addition, we consider a random process for evolving directed graphs with bounded degrees. The bounds are not the same for different vertices but satisfy a predefined distribution. The analytic expression obtained for the evolving degree distribution is then combined with the weak-component criterion to obtain the exact time of the phase transition. The phase-transition time is obtained as a function of the distribution that bounds the degrees. Remarkably, when viewed from the step-polymerization formalism, the new results yield Flory-Stockmayer gelation theory and generalize it to a broader scope.