Abstract:The kinetics of oxidation of vanillin (VAN) by hexachloroplatinate(IV) has been investigated in perchloric acid solutions in the presence of ruthenium(III) catalyst at a constant ionic strength of 1.0 mol dm -3 and at 25°C. The progress of the reaction was followed spectrophotometrically. The reaction was not proceeding in the absence of the catalyst. The reaction exhibited first order kinetics with respect to both [HCP] and [Ru(III)] and less than unit order with respect to both [VAN] and [H + ]. Increasing ionic strength and dielectric constant were found to increase the oxidation rate. The reaction mechanism adequately describing the kinetic results has been proposed. Both spectral and kinetic evidences revealed formation of an intermediate complex between vanillin substrate and ruthenium(III) catalyst prior to the rate-determining step. The complex reacts with the oxidant (HCP) by an inner-sphere mechanism leading to decomposition of the complex in the rate-determining step to give rise to the final oxidation products which were identified by both spectral and chemical analyses as vanillic acid and tetrachloroplatinate(II). The rate law expression for the catalyzed reaction was deduced. The reaction constants involved in the different steps of the reaction mechanism have been evaluated. The activation parameters associated with the rate-limiting step of the reaction, along with the thermodynamic quantities of the equilibrium constant have been evaluated and discussed.