An experimental investigation of a separation bubble on a C4 leading edge plate at an incidence in a low turbulence free stream at six Reynolds numbers, is reported. The long separation bubble, formed at the leading edge, has a short laminar and transitional zone followed by a long turbulent zone. The increase in Reynolds number reduced the laminar and transitional part significantly, but its effect on the length of the separation bubble is marginal till the transition starts at the separation point. The peak intermittency factor, which occurs at the centre of the shear layer, follows the universal intermittency distribution curve. The spot production rate for the separated flows are several orders of magnitude higher than that for the attached boundary layers. The transition process is initiated by the amplification of the instability waves in the shear layer similar to the natural mode of transition. At high Reynolds numbers, the onset of transition is likely to take place at the separation point. At lower chord Reynolds numbers, the separation to onset Reynolds number and the spot production rate parameter are functions of the separation momentum thickness Reynolds number. The free stream turbulence intensity has a strong influence on the spot production rate. New correlations for transition in the leading edge separation bubbles are proposed based on all the available intermittency measurements in the leading edge separation bubbles.